Dynamic scheduling of manufacturing systems using machine learning: An updated review

نویسندگان

  • Paolo Priore
  • Alberto Gomez
  • Raúl Pino
  • Rafael Rosillo
چکیده

A common way of dynamically scheduling jobs in a manufacturing system is by implementing dispatching rules. The issues with this method are that the performance of these rules depends on the state the system is in at each moment and also that no “ideal” single rule exists for all the possible states that the system may be in. Therefore, it would be interesting to use the most appropriate dispatching rule for each instance. To achieve this goal, a scheduling approach that uses machine learning can be used. Analyzing the previous performance of the system (training examples) by means of this technique, knowledge is obtained that can be used to decide which is the most appropriate dispatching rule at each moment in time. In this paper, a literature review of the main machine learning based scheduling approaches from the last decade is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Scheduling of flexible manufacturing systems using genetic algorithm: A heuristic approach

Scheduling of production in Flexible Manufacturing Systems (FMSs) has been extensively investigated over the past years and it continues to attract the interest of both academic researchers and practitioners. The generation of new and modified production schedules is becoming a necessity in today’s complex manufacturing environment. Genetic algorithms are used in this paper to obtain an initial...

متن کامل

Optimisation of assembly scheduling in VCIM systems using genetic algorithm

Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is ...

متن کامل

Bi-level Model for Reliability based Maintenance and Job Scheduling

Many defects in manufacturing system are caused by human resources that show the significance of the human resources in manufacturing systems. Most manufacturers attempt to investigate the human resources in order to improve the work conditions and reduce the human error by providing a proper work-rest schedule. On the other hand, manufacturer deal with machine scheduling based on demand and wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AI EDAM

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014